UNUSUAL INDICATIONS FOR ECMO
DAVE WILLIAMS D.O.
INTENSIVIST AT ABBOTT NORTHWESTERN HOSPITAL

APRIL 22ND, 2016

DISCLOSURE
There are no conflicts of interest or relevant financial interests in making this presentation and have indicated that my presentation does not include discussion of an unlabeled use of a commercial product, or an investigational use not yet approved for any purpose.

OBJECTIVES

• Sepsis
• Massive Pulmonary Embolism
• Toxicology

ECMO IN ADULT SEPTIC SHOCK

• Bacteremia were considered relative contraindication
• Entrapping bacteria, function as culture medium
• Septic coagulopathy
• Increase risk of bleeding
• Minimal reports of use of ECMO in adult septic shock
• During last decade
• Improvement in technology
• Safety
• Indications are continuously being challenged

CASE SERIES
14 patients with severe septic shock and refractory cardiac dysfunction

- All placed fem-fem VA ECMO
- Evidence of tissue hypoxia (mottling or elevated blood lactate (average 9))
- Confirmed intravascular volume repletion
- Severely suppressed LV function 10-30% (avg 16%)
- CI < 2.2L/min/m sq (avg 1.3)
- high-dose catecholamines
- Shock to ECMO interval: 24 hours (3 to 108 hrs)

10 of 14 survived

Adult patients in refractory septic shock and requiring VA ECMO for support

- 52 patients
- 75% had failure of at least 3 organ systems
- 40% developed cardiac arrest then cannulated
- 8 of 52 (15%) survived. All 20 patients aged 60 or older died

TOO LATE

• VV septic: 45.5% survival
• VA septic: 24.4% survival
• CPR pre-ECMO 32%
• CPR during ECMO 34%

TOO LATE
• Hypodynamic/preserved LV function
• Worse outcomes on VA vs VV reported

Actual incidence of global left ventricular hypokinesia in adult septic shock

Antoine Viallard-Baron, MD; Vincent Colle, MD; Cyril Charron, MD; Guillaume Delattre, MD; Bernard Paye, MD; Francois Jardin, MD

- Septic shock patients studied by TEE
- Global LV hypokinesia defined as LV ejection <45%
- No free of cardiac disease
- 26 of 67 on admission (40%)
- Additional 14 within 24-48hrs (40%) septic patients had LV dysfunction
- Acute and reversible; providing patient recover

Circulating Myocardial Depressant Substance (MDS)

TNF-α
IL-1β
IL-6
NO

Crit Care Med 2008 Vol. 36, No. 6
MODE SELECTION: CONUNDRUMS IN ECMO

- VA ECMO is tempting to consider as a solution to all problems

- Example: respiratory failure with profound hemodynamic compromise, ongoing hypoxia despite advance mechanical ventilator settings, elevated intrathoracic pressures, worsening acidosis...

- Restoration achieved by both VA and VV

Which mode

1. Cardiogenic shock (LV <30%) and sepsis: Peripheral VA ECMO
2. ARDS and Hyperdynamic/preserved LV function: VV ECMO
 - Reduction in vasopressor requirements usually dramatic
3. Severe ARDS and depressed LV function: VA or VAV
 - Peripheral VA can result in desoxygenated blood being ejected by the LV, due to pulmonary dysfunction, minimizing appropriate oxygenation to the heart, brain and upper body
 - Central VA or VAV hybrid can be used to overcome this problem

Take away points for sepsis and ECMO

- Ideally initiate within first 24hrs of shock onset
- Confirm patient not fluid responsive
- Lactate <4.5
- SOFA score < 1.5
- LV dysfunction EF <30% will need VA vs VAV
- CPR pre-ECMO or during ECMO..........poor outcomes
- Support to LV recovery

Table 2 Incidence of LV systolic dysfunction in septic shock according to the time of evaluation

<table>
<thead>
<tr>
<th>Time of sepsis evaluation</th>
<th>Incidence of LV systolic dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>20%</td>
</tr>
<tr>
<td>72 hours</td>
<td>35%</td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
</tr>
<tr>
<td>48 hours</td>
<td>15%</td>
</tr>
<tr>
<td>Day 1.5</td>
<td>60%</td>
</tr>
<tr>
<td>96 hours</td>
<td>100%</td>
</tr>
</tbody>
</table>

LV = left ventricle; TE = transeosophageal echocardiography; TTE = transthoracic echocardiography; CPR = cardiopulmonary resuscitation; EF = ejection fraction; SOFA = Sequential Organ Failure Assessment.
CASE 1
• 39 y.o. male was admitted septic shock (lactate 4.4, 3 pressors)
 • Acute respiratory failure, lobar pneumonia after a 5-day flu-like illness and acute renal failure
 • Blood and sputum cultures were positive for Beta Streptococcus Group A.
 • Echocardiogram initially showed mild decrease in LV and RV systolic function
 • 24hrs after admission showed severe biventricular systolic heart failure with LVEF < 20%
 • Evolving ARDS, Refractory hypoxia despite aggressive ventilator settings
 • What type of ECMO should be considered?

CASE 2
• 59 year old female with URI symptoms since early October treated with Augmentin and Levofloxacin
 • Presented to OSH ED- O2 sat 82%, lactate 4.6
 • On admission Cr 5.5, ABGs 7.11 /50/64/15
 • Pt intubated and started on Flolan, Norepi, vasopressin, epi and phenylephrine
 • Pt paralyzed on FI02 100% - chest CT showed consolidation bilateral upper lobes and left lower lobe
 • TTE hyperdynamic LV with EF>70%
 • Blood culture from outside hospital + strep
 • What type of ECMO mode???
ECMO IN MASSIVE PE

- AHA define massive PE as sustained hypotension (systolic BP <90 mmHg or systolic pressure drop >40mmHg for 15 min) or requiring inotropic support
- Cardiogenic shock that results from pulmonary embolus has a high mortality rate (20% -30%)
- Impending or ongoing cardiac arrest
- Systemic thrombolysis or anticoagulation alone has not been always shown to be effective

MASSIVE PE

- Treatment
 - Anticoagulation RR
 - Systemic or intrapulmonary thrombolytic (6.2% mortality)
 - Clot fragmentation, suction embolectomy (13.5% treatment failure including death)
 - Surgical embolectomy (6% 30 day mortality)
- Hemodynamically unstable patients/ cardiac arrest
- Diagnostic and therapeutic options may be limited

RV FAILURE AND ECMO

- Rationale is to divert some blood from right atrium to the arterial circulation
- Unloading the RV and relieving its dilation
- ECMO relieves hypoxemia due to shunt and can provide therapeutic means by anticoagulation
- Massive pulmonary emboli will usually resolve or move into segmental branches within 48-72 hours of ECLS support

- Reviewed case reports and case series published in last 20yrs
- 11 single case reports and 8 case series
- Definitive tx ranged from none to any thrombolytic, catheter embolectomy or surgical embolectomy

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number (%)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8 (73%)</td>
<td>1 (12%)</td>
</tr>
<tr>
<td>Thrombolysis</td>
<td>2 (18%)</td>
<td>1 (12%)</td>
</tr>
<tr>
<td>Catheter embolectomy</td>
<td>3 (27%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Surgical embolectomy</td>
<td>2 (18%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Thrombolysis + Catheter embolectomy</td>
<td>1 (9%)</td>
<td>1 (12%)</td>
</tr>
<tr>
<td>Thrombolysis + Surgical embolectomy</td>
<td>2 (18%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Thrombolysis + Catheter embolectomy + Thrombolysis</td>
<td>3 (27%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Total</td>
<td>20 (100%)</td>
<td>8 (40%)</td>
</tr>
</tbody>
</table>
• VA approach in 88%, VV 1.6, VAV 10.2%
• Thrombolysis part of cardiac arrest algorithm when PE suspected
 • 55% cases presenting in cardiac arrest
 • 31.2% survival
• Overall survival was 70.1% and none of the definitive treatment modalities was associated with higher mortality

<table>
<thead>
<tr>
<th>Definitive Treatment</th>
<th>Odds ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical embolectomy</td>
<td>3.5 (95%-13.6)</td>
<td>0.067</td>
</tr>
<tr>
<td>Thrombolysis</td>
<td>1.8 (95% - 10.0)</td>
<td>0.098</td>
</tr>
</tbody>
</table>

Perfusion. 2015. Vol. 30(8) 611-616

• 21 patients with MPE with profound shock and severe hypoxemia treated with ECLS
• Cardiac arrest due to PE (8 cases)
• Survival rate 62%
• Six patients had fibrinolytic therapy before requiring ECLS
• 10 of the 13 survivors required no additional therapy other than anticoagulation
 • Two patients underwent surgical pulmonary embolectomy after initial ECLS
 • TEE 4 days after ECLS demonstrated minimal clot dissolution and persistent RV failure

• 193 cases: overall 73% survival (65% in cardiac arrest)
• ECMO was combined with:
 • surgical embolectomy in 35% (68 of 193)
 • thrombolytic therapy in 62% (120/193)
 • catheter therapy in 24% (46/193).
• The survival rate breakdown:
 • 80% in surgical embolectomy
 • 71% in thrombolytic therapy
 • 76% in catheter therapy

TIMING

• Bedside decision
 • Look at all factors
• Cardiac arrest
 • tPA vs no tPA
 • Percutaneous vs cutdown
• Impending arrest
 • Maintain hemodynamic stability for bridge to definitive therapy
 • Transport of patient to facility where surgical embolectomy could be feasible
• Contra-indication for tPA
TOXICOLOGY

- Calcium channel blockers and beta-blockers represent more than 65% of deaths from acute drug intoxication [1].
- Beta blocker poisoning can result in fourfold cardiovascular toxicity
 - Myocardial depression, bradycardia
 - Impairs intracellular movement of calcium into muscle cells
 - QRS widening, QT lengthening, especially with sotalol
 - Predisposes to VT, torsades de pointes, VF
 - Vasodilatation

1. F. Sangalli et al. ECMO-Extracorporeal Life Support in Adults; Springer-Verlag Italia 2014.
2. ANNALS OF EMERGENCY MEDICINE 37 : 4 APRIL 2001

RESUSCITATION

- Insulin-glucose infusion
- Calcium……a lot
- Low threshold for S-G cath
- Rapid escalation of pressors
- Methylene Blue
 - Inhibits the nitric oxide
 - Decreasing vasodilatation
 - Increasing responsiveness to vasopressors

SEQUESTRATION THERAPY

- Fat emulsions (Intralipid® 20%) only for patients in extremis and not responding to other resuscitative measures……..
 - bolus doses of 1.5 mL/kg over 1 minute,
 - infusion of 0.25 mL/kg/min

FIRST REPORTED SERIES

- Babatasi et al. 2001
- Six patient with cardiac arrest following intentional overdose of beta-blockers, calcium channel blockers
- Supported on fem-fem VA ECMO
- First two patients died of MSOF due to delay in installation
- Four patients survived without neuro or medical sequelae
• Largest case series to date
 • 721 patients admitted for drug intoxication, 17 with refractory cardiogenic shock (n=10) or cardiac arrest (n=7)
 • All fem-fem VA ECMO
 • 13 survived and were discharged without significant cardiovascular or neurological sequelae

Daubin et al. Critical Care 2009, 13:R138

• compared poisoned cardiogenic shock patients treated with or without ECLS
 • 10 persistent cardiac arrest and 42 with severe shock
 • 14 patients were treated with ECLS and 48 patients with conventional therapies
 • 12/14 ECLS survived, including all cardiac arrest

CASE 1
• 61 year old gentleman who has been having multiple psychosocial stressors
 • Month supply metoprolol and norvasc
 • Felt somewhat dizzy, nauseated.
 • Emergency Department at 8 hours after ingestion
 • Dopamine>norepi> High dose insulin> methylblue
 • TTE preserved LV function, HR >65
 • 26 hrs after ingestion: worsening shock, on/off epi, SG placed
 • Temp pacer as HR into 40s
 • Emergent ECMO
 • 73 hr. run time and successful decanulated

CASE 2
• 65 year old female found by her husband after having taken a month's worth of atenolol and a “handful of ambien”.
 • She was awake and talking when husband first arrived at home. Reported atenolol at 5 pm followed by ambien at 10 pm.
 • Unresponsive in the ambulance and was intubated at OSH.
 • 4hrs in the ED before developed hypotensive and bradydysrhythmia responded to dopamine
 • Delay in transfer due to weather
 • Escalating multiple amps of epinephrine, and high dose epinephrine and norepinephrine infusions, and vasopressin.
 • Worsening metabolic acidosis (Lactate 9.4), acute kidney injury.
 • Bradycardia into 40s. Urgently taken to cath lab for transvenous pacing after transcutaneous pacing failed to capture.
 • Heart rate 100 (paced), Pa pressure 40/28 PCW 28 TD CO 2.47 CI 1.61 MVO2 48%
 • Methylene blue given with improvement in SVR
 • Discussions regarding intralipid
 • STAT echocardiogram reveals globally depressed EF with apical ballooning wall motion abnormality pattern consistent with a takotsubo cardiomyopathy.
 • VA ECMO remained as the best salvage therapy for her ongoing shock
CONSENSUS

- Earlier the better, delay of shock presentation given slow absorption
- Intralipid not good for circuit
- IABP plays a role in less severe forms
- ECMO is crucial with severe cardiogenic shock
 - Gain time to recovery / washout
- Average ECMO duration 4.5 days; thus lower chance complications
- Drug poisoning appears to be one of the most favorable scenarios for ECMO support

THANK YOU

- David.Williams@allina.com